
CS 220r: Cryptography, Notes

Jonathan Wang

Fall, 2009

CS 220r was taught by Professor Michael O. Rabin in the fall of 2009 at Harvard University.

Contents

1 Elementary Number Theory 3

2 M2 mod n encryption 5

3 RSA encryption 7
3.1 Euler’s Theorem . 7
3.2 Encryption system . 7
3.3 Semantic security [Goldwasser-Micali (1982)] . 7
3.4 Malleability . 8

4 ElGamal Encryption 8
4.1 Computation Diffie-Hellman . 9
4.2 Decision Diffie-Hellman . 9
4.3 Encryption system . 9

5 Digital Signatures 9
5.1 RSA (pure) signatures . 10
5.2 ElGamal signatures . 10

6 Zero Knowledge Proofs 11
6.1 Interactive ZKP of knowledge of

√
y mod n [Fiat-Shamir] . 12

6.2 Non-interactive ZKP of knowledge of
√

y mod n . 13
6.3 Digital signature using Fiat-Shamir . 13
6.4 ZKP of knowledge of

√
y1, . . . ,

√
y10 mod n . 13

6.5 A computationally efficient bijection Sk
∼= [0, k!− 1] . 15

6.6 Non-interactive ZKP of knowledge of
√

y1, . . .
√

y10 mod n . 15

7 Overview of Financial Cryptography 15
7.1 Time Lapse Cryptography . 15
7.2 Vickery auctions . 15
7.3 Regulation/compliance . 16
7.4 Multi-party computations . 16
7.5 Homomorphic encryptions . 16

0Contributions from Adrian Sanborn

1

8 Secret Sharing 16
8.1 Classical secret sharing [A. Shamir] . 16
8.2 Check vectors . 17
8.3 Verifiable secret sharing . 17
8.4 Sharing multiple secrets . 18

9 Time Lapse Cryptography using ElGamal 19

10 Byzantine Agreement 19
10.1 Byzantine agreement: applications to TLC . 21

11 Commitment Methods 21

12 Straight Line Computations 22
12.1 Introduction . 22
12.2 The model . 23
12.3 Translation of inputs . 23
12.4 Building a translation of SLC; ZKP of correctness . 25
12.5 Full verification . 26
12.6 ZKP of inequalities . 26

2

1 Elementary Number Theory

9/8 Let N = {0, 1, 2, . . .} and Z = {0, 1,−1, 2,−2, . . .}. An element p ∈ N, p 6= 1 is prime if a | p implies a = 1
or a = p (e.g., 2400− 593 is prime). Let π(x) denote the number of primes less than x.

The following theorem of Chebyshev shows that π(x) grows like x
ln x .

Theorem 1.1 (Chebyshev). 0.9 · x
ln x < π(x) < 1.1 · x

ln x .

Theorem 1.2. The integers Z are a unique factorization domain (UFD). That is, for a ∈ N, one can write a =

p
k1
1 pk2

2 · · · p
kℓ

ℓ
, where pi 6= pj for i 6= j, pi are prime, ki ≥ 1. Furthermore if a = q

m1
1 qm2

2 · · · q
mt
t is another

factorization, then ℓ = t and q1, . . . , qt are a permutation of p1, . . . , pℓ and the corresponding exponents are equal.

For a, b ∈ N, the greatest common denominator gcd(a, b) is the d such that

• d | a and d | b, and

• If d1 | a and d1 | b, then d1 | d.

For a number n, let the “length” ℓ(n) = ⌈log2 n⌉. For example if n ∼ 21000, then ℓ(n) = 1000.
An algorithm AL on integers a1, . . . , am is efficient if there exists k such that AL(a1, . . . , am) requires

max(ℓ(ai))
k “steps”.

Theorem 1.3. Given n, determining if n is prime can be done efficiently.

Conjecture 1.4. It is an unproven assumption that there is no efficient algorithm for factorization.

Theorem 1.5. The gcd(a, b) can be efficiently computed.

Proof. It is a fact (shown on the homework) that computing a − b for a > b is efficient. Write a = 2k1 a1,
b = 2k2b1 where 2 ∤ a1, 2 ∤ b1. Then

gcd(a, b) = 2min(k1,k2) gcd(a1, b1).

Assume a1 > b1. Claim that gcd(a1, b1) = gcd(a1 − b1, b1).
(⇒) Observe that gcd(a1, b1) = d =⇒ d | a1 and d | b1 =⇒ d | a1 − b1 and d | b1. I.e., d is a common

divisor of a1 − b1, b1.
(⇐) If d1 | a1 − b1 and d1 | b1, then d1 | a1 − b1 + b1 = a1. Hence d1 | d.

Observe that if 2 ∤ a1 or 2 ∤ b1, then 2 ∤ gcd(a1, b1). Note that a1 − b1 is even. Consequently,

gcd(a1, b1) = gcd

(

a1 − b1

2m
, b1

)

= gcd(a2, b2).

(m is max power of 2) where b2 = b1 and a2 <
a1
2 . If a2 > b2 then above 2 steps reduced max(a1, b1) by 1/2.

Otherwise do again to get (a3, b3) = (a2, b2−a2

2m′).

Replace (a1, b1) with (a3, b3), where gcd(a3, b3) = gcd(a1, b1) = d and max(a3, b3) <
1
2 max(a1, b1).

Proceeding recursively we eventually get (aℓ, bℓ) where aℓ = bℓ or bℓ = 0.

Division with remainder: Given a, n we can write a = nq + r with 0 ≤ r < n. Let a mod n := r. We say
that a ≡ b mod n if n | a− b. We leave the following proposition as an easy exercise.

Proposition 1.6. If a1 ≡ b1 mod n and a2 ≡ b2 mod n, then a1 + a2 ≡ b1 + b2 mod n and a1a2 ≡ b1b2 mod n.

Multiplication, division, and taking remainder are all efficient algorithms. Therefore computing the
product a1 · · · a4 mod n = (a1 mod n) · · · (a4 mod n) can be done efficiently in length of n.

3

Proposition 1.7. Let a, b, n each have at most k digits. Then we can compute ab mod n efficiently (in time polynomial
in k).

Proof. Algorithm: write b = ǫ0 + ǫ1 · 2 + · · ·+ ǫk−1 · 2k−1. Thus

ab = aǫ0(aǫ1 ·2) · · · (aǫk−1·2k−1
)

where ǫi ∈ {0, 1}. Now just calculate

x1 = a, x2 = a2 mod n, x3 = x2
2 mod n, . . . , xk−1.

9/10 We proved the following proposition in the homework.

Proposition 1.8. If gcd(a, b) = d, then there exist x, y ∈ Z such that ax + by = d, |x| < b, and |y| < a.

If gcd(a, b) = 1, then we say that a and b are relatively prime. In this case there exist x, y ∈ Z such that
ax + by = 1, which implies that ax ≡ 1 mod n. For example, 8 · 2 ≡ 1 mod 15.

For 1 < n ∈ N, define Zn = {0, 1, . . . , n− 1} and

Z
∗
n = {a | 1 ≤ a < n, gcd(a, n) = 1}.

For example, Z
∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}.

The celebrated Euler’s totient function is defined by ϕ(n) := |Z∗n| (e.g., ϕ(15) = 8).

Proposition 1.9. Let n = pq for p, q prime. Then ϕ(n) = (p− 1)(q− 1).

Proof. Subtract numbers in Zn that are divisible by p or q, then add back overlap: pq− p− q + 1 = (p−
1)(q− 1).

Proposition 1.10. Consider Z
∗
n. Then a, b ∈ Z

∗
n implies (a · b) mod n ∈ Z

∗
n.

Let G = (G, ·) be a set with some binary operation. G is a group with respect to · if
1. a, b ∈ G =⇒ a · b ∈ G. (Closure)

2. a, b, c ∈ G =⇒ (a · b) · c = a · (b · c). (Associativity)

3. ∃e ∈ G such that for a ∈ G, a · e = e · a = a. (Identity)

4. ∀a ∈ G, ∃x ∈ G such that a · x = x · a = e. (Inverse)

If |G| < ∞, then G is finite. If ∀a, b ∈ G, a · b = b · a, then G is commutative.

Proposition 1.11. Z
∗
n is a commutative group with respect to multiplication mod n.

Theorem 1.12 (Chinese Remainder Theorem). Let gcd(a1, a2) = 1 and r1 ∈ Za1 and r2 ∈ Za2 . Then there
exists x ∈ Zn (n = a1a2) such that

x ≡ r1 mod a1

x ≡ r2 mod a2

Furthermore x is unique modulo n.

Proof. There exist u, v ∈ Z such that a1u + a2v = 1. This implies that

a1u ≡
{

0 mod a1

1 mod a2
a2v ≡

{

1 mod a1

0 mod a2
.

Now let x = r1a2v + r2a1u mod n.
Uniqueness: suppose ∃x̄ ∈ Zn with x̄ mod a1 = r1 and x̄ mod a2 = r2. Then a1 | x̄ − x and a2 | x̄ − x,

so since gcd(a1, a2) = 1, this implies n = a1a2 | x̄− x.

4

Let p be prime. Consider Z
∗
p = {1, 2, . . . , p− 1}. We say that a ∈ Z

∗
p is a quadratic residue (qr) mod p if

there exists x ∈ Z
∗
p such that x2 ≡ a mod p.

Lemma 1.13. For p > 0 prime, the number of different qr mod p equals
p−1

2 .

Proof. Consider x2 mod p for 1 ≤ x ≤ p−1
2 . We claim these are all distinct. Suppose x2 ≡ y2 mod p. Then

p | x2 − y2 = (x + y)(x− y). If both x, y ≤ p−1
2 , this is impossible. Thus there are at least

p−1
2 quadratic

residues. The rest of the squares are all of the form (p− x)2 ≡ x2 mod p for 1 ≤ x ≤ p−1
2 , so we get nothing

new.

For a ∈ Z
∗
p, the Legendere Symbol is

(

a

p

)

=

{

1 if a q.r.

−1 if a quadratic non-residue

Question 1.1. Can we compute (a
p)?

Question 1.2. If (a
p) = 1, can we find an x such that x2 ≡ a mod p?

2 M2 mod n encryption

Alice chooses two “large” primes p, q ∼ 21000. Let nA = pq be the public key. The pair {p, q} is the secret
key.

Encryption: Bob has M < n with gcd(M, n) = 1. (If Bob found M not relatively prime to n, then he has
factored n, and we assumed factorization is hard.)

Bob
C=En(M):=M2 mod n−→ Alice

C is the cipher text. Alice computes C mod p = c1 and C mod q = c2. Observe that (c1
p) = 1 since

c1 = M2 mod p. Similarly (c2
q) = 1.

Alice can find1x1 ∈ Z
∗
p, x2 ∈ Z

∗
q such that

x2
1 mod p = c1, x2

2 mod q = c2.

She then finds an M1 ∈ Z
∗
n such that M1 mod p = x1 and M1 mod q = x2 by CRT. Now M2

1 mod p = c1

and M2
2 mod q = c2, so by uniqueness of CRT, M2

1 mod n = C.

Note however that there are actually four distinct M1, M2, . . . , M4 modulo n such that M2
i mod n = C.

Proposition 2.1. For Y ∈ Z
∗
n, the equation Y ≡ X2 mod n has exactly 4 solutions X1, X2, X3, X4 ∈ Z

∗
n, where

n = pq for primes p, q. Furthermore, we have gcd(X1 − X2, n) = q, gcd(X1 − X3, n) = p.

Proof. When working modulo a prime, each quadratic residue has exactly two square roots. Hence, X mod

p is either equal to some 1 ≤ xp ≤ p−1
2 or p− xp; similarly for q. Then each pair (xp, xq), (p− xp, xq), (xp, q−

xq), (p− xp, q− xq) yields a unique solution mod n by the CRT. Checking modulo p, q, CRT gives the last
assertion.

Fix for ambiguity: Bob adds a prefix M̄ = ǫ1 · · · ǫ15M where ǫ1 · · · ǫ15 is specified in Alice’s public key.
Now cipher text is C = M̄2 mod n.

9/15 By the CRT, it is not hard to break the encryption given the factorization of n (just do the same thing
Alice does).

1This is shown later for certain primes in Proposition 2.6.

5

Theorem 2.2. Assume there is an algorithm AL where given an encryption Y = X2 mod n finds in time T a solution
Xi such that Y = X2

i mod n. Then n can be factored in expected time 2T.

Proof. (Factoring Algorithm) Choose randomly X ∈ [1, n − 1]. If gcd(X, n) 6= 1 then you are done (the
gcd must be p or q). Otherwise (in most cases) we have X ∈ Z∗n. Compute Y = X2 mod n. Compute
AL(Y) = X1 (assume it is the previously designated “first” solution WLOG). Then

(X− AL(Y), n) =

{

q if X = X2

p if X = X3

This yields a factorization and does so with probability 1/2. Hence, expected time of algorithm is 2T.

Now suppose that AL computes the square root in 1 case out of 1000. To factor n: randomly choose X
and run AL on Y = X2 mod n for time T. If AL succeeds, proceed as in the proof of Theorem 2.2; otherwise
choose a new X and repeat. Then we can factor n in expected time 2000T instead.

We can therefore conclude that decoding M2 mod n implies factorization of n.
We now address how to actually find solutions to y = x2 mod p.

Theorem 2.3 (Fermat’s Little Theorem). For p prime, we have ap ≡ a mod p for any a.

Proof. There are many ways to prove this. One way is to use induction. The case a = 0 is trivial. Now by
the binomial theorem, we have

(a + 1)p ≡ ap +

(

p

1

)

ap−1 + · · ·+
(

p

p− 1

)

a + 1 ≡ a + 1 mod p,

where it is an easy exercise to show p | (p
i) for 0 < i < p.

For a ∈ Z
∗
p, since a is invertible, Fermat’s Little Theorem implies ap−1 ≡ 1 mod p.

A group is cyclic if there exists g ∈ G such that {1, g, g2, . . . , g|G|−1} = G. The element g is called a
generator of G.

The proof of the following fact is slightly involved and uses algebra, so we omit it.

Lemma 2.4. The multiplicative group of any finite field is cyclic. In particular Z
∗
p is cyclic.

Theorem 2.5 (Euler’s criterion). An element a ∈ Z
∗
p is a quadratic residue mod p if and only if a(p−1)/2 ≡

1 mod p (if not a qr, then it is −1). In other words, the Legendre symbol
(

a
p

)

= a(p−1)/2 mod p.

Proof. If a = x2 mod p, then a(p−1)/2 ≡ xp−1 ≡ 1 mod p by Fermat’s Little Theorem. For the other direction,
Z
∗
p is a cyclic group by Lemma 2.4. Let g be a generator and a ≡ gi mod p. Clearly if i is even, then a is a

qr. Since the order of g is p− 1, we must have g(p−1)/2 = −1. Thus a(p−1)/2 ≡ (−1)i mod p. If a is not a qr,
i must be odd, so (−1)i = −1.

Proposition 2.6 (Algorithm). Suppose we are given a prime of the form p = 4k + 3. In this case we solve x2 =
a mod p for x in the following way: Set x = ak+1 mod p. Then

x2 = a2k+1 · a = a(p−1)/2 · a ≡ a (mod p)

One-Time Pad

Note that in the M2 mod n cryptosystem above, encryption is pretty fast but decryption is a bit more com-
putationally intensive. Suppose Alice has a powerful computer and Bob has a cell-phone processor. Then
Bob can encrypt on his phone, send to Alice, and she can decrypt, but they can’t send encrypted messages
from Alice to Bob. To get around this, Bob encrypts the key to a one-time pad and sends it to Alice, and she
uses that pad to encrypt her message and send it back.

Let⊕ denote XOR. Alice and Bob have one-time pad X in common. Alice has message M and generates
cyphertext C = M⊕ X. To decrypt, Bob calculates C⊕ X = M⊕ X⊕ X = M.

6

3 RSA encryption

3.1 Euler’s Theorem

Take the prime factorization of n = p
k1
1 p

k2
2 · · · p

kℓ

ℓ
.9/17 It can be shown that

ϕ(n) = (p
k1
1 − p

k1−1
1) · · · (p

kℓ

ℓ
− p

kℓ−1
ℓ

)

(one way is to use a probabilistic argument). In particular for n = pq, as before ϕ(n) = (p− 1)(q− 1).

Theorem 3.1 (Euler’s Theorem). If gcd(a, n) = 1, then aϕ(n) ≡ 1 mod n.

Proof. We will only prove the case a(p−1)(q−1) ≡ 1 mod n for n = pq. We have a(p−1)(q−1) ≡ (ap−1)q−1 ≡
1 mod p since p ∤ a. Similarly, a(p−1)(q−1) ≡ 1 mod q. Thus aϕ(n) − 1 is a multiple of p and q, so it is a
multiple of pq.

For the general theorem, we have that Z
∗
n is a group of order ϕ(n). By Lagrange’s Theorem, for any

a ∈ Z
∗
n, we have aϕ(n) ≡ 1 mod n.

3.2 Encryption system

Alice creates two large primes p, q. n = pq. Choose e such that

gcd(e, ϕ(n)) = 1.

Let the public key be the pair pkA = (n, e). Alice computes d such that ed ≡ 1 mod ϕ(n) by extended gcd
algorithm. For this knowledge of ϕ(n) = (p− 1)(q− 1) and in particular of the factorization p, q is needed.
The secret key is skA = (n, d).

Encryption (by Bob): for 1 ≤ M < n with gcd(M, n) = 1, the ciphertext is

C = E(n,e)(M) = Me mod n.

Lemma 3.2. Let x ∈ Z
∗
n. We claim that (xe)d ≡ x mod n.

Proof.

(xe)d ≡ xed ≡ xkϕ(n)+1 ≡ x mod n.

Decryption: Alice has (n, d). By the lemma, Cd mod n ≡ (Me)d ≡ M.

RSA assumption: Decoding RSA without secret key is intractable. It is unknown whether breaking RSA
implies factoring n. However, we have the following theorem.

Theorem 3.3. Finding d such that (xed−1) ≡ 1 mod n for all x ∈ Z
∗
n implies factoring n.

3.3 Semantic security [Goldwasser-Micali (1982)]

A class of encryption algorithms E is semantically secure if for any two messages M1 6= M2, if we randomly
choose E ∈ E and δ ∈ {1, 2}, it is intractible, given E(Mδ), to compute if δ = 1 or δ = 2.

Let Alice be Broker and Bob be Client. Bob has M1 = buy Google stock, M2 = sell Google stock.
Suppose we intercept

Bob
E(n,e)(Mδ)−→ Alice,

then if encryption isn’t semantically secure, we can find out if B is buying or selling.

7

3.3.1 Pure RSA is NOT semantically secure

The interceptor can just compute E(n,e)(M1) and E(n,e)(M2), and compare them to C to find the answer.
To make RSA semantically secure, we use a probabilistic encryption. Alice specifies [in her public key]

the length ℓ(P1 ∧ P2) and a prefix P1. Bob randomly chooses P2 ∈ {0, 1}100 and concatenates prefixes to get
X = P1 ∧ P2 ∧M. Assuming X ∈ Z

∗
n, the ciphertext is C = E(n,e)(X). Alice can then decode to get X, and

since she knows the length of P1 ∧ P2. The adversary can’t find which M1, M2 Bob is sending because he
doesn’t know the prefixes and there are too many possibilities to try. [Note: this does not totally preclude
the possibility of other ways to distinguish M1, M2.]

3.4 Malleability

An encryption algorithm E is malleable if there is a function f (M) and an efficient algorithm AL such that
AL(E(M)) = E(f (M)). To see why this is bad, suppose originally we have

Bob
C=E(M)−→ Alice

There can be a man in the middle attack

Bob
C−→ intercept

AL(C)−→ Alice
Decode→ f (M)

Now Alice gets the wrong message “from” Bob.

3.4.1 Pure RSA is malleable

Let f (M) = uM mod n. Then

(ue mod n) · (Me mod n) = (uM mod n)e mod n

Thus the person in the middle can change M to 2M mod n.
To fix this, we use the same probabilistic encryption method mentioned before. If we have (prefix 1,

prefix 2, M), then multiplying by ue mod n will change the prefix, which messes up the message. [Note:
again, this does not show that other possible functions f do not work.]

4 ElGamal Encryption

Definition 4.1 (Sophie Germain Primes). A number q is a Sophie Germain (SG) prime if there exists a prime
p such that q = 2p + 1.

For example, 7 and 23 are SG primes.
It is an open problem whether there are infinitely many SG primes, but we will assume that SG primes

of the size we need can be generated (∼ 2100).

Let q = 2p + 1 be a SG prime. Define QRq = {x2 mod q | x ∈ Z
∗
q}.

Lemma 4.1. Consider G = (QRq, · mod q).

1. |G| = q−1
2 = p

2. G is a cyclic group.

Proof. Since Z
∗
q is cyclic, for a generator g, we have Z

∗
q = gZ (slight abuse of notation). Then it is not hard

to see that GRq = g2Z. Note that |G| = q−1
2 = p is prime, so G is also cyclic.

9/22 For a cyclic group Ḡ and any generator g, the discrete log problem for (Ḡ, g) is intractable if for g1 ∈ Ḡ,
computing log g1 = a such that ga = g1 is an intractable problem.

8

4.1 Computation Diffie-Hellman

Problem: Ḡ, g. Given g1 = ga and g2 = gb, compute gab.
CDH intractability assumption: the above is intractable.
Application of CDH intractability: Key exchange. Fast secret key encryption (say AES). Alice and Bob

want to establish a one-time common AES key K. Alice randomly selects a ∈ {1, . . . , |G| − 1} and sends ga

to Bob. Bob randomly selects b ∈ {1, . . . , |G| − 1} and send gb to Alice. Alice computes (gb)a = gab = K
and Bob computes (ga)b = K. Now by CDH intractability, an adversary knowing ga, gb cannot compute
gab = K.

If discrete log can be efficiently computed for Z
∗
q , then CDH is tractable.

4.2 Decision Diffie-Hellman

Given g1 = ga, g2 = gb, and g3, decide if g3 = gab.
DDH intractability assumption: this problem is intractable.

4.3 Encryption system

We now describe the actual encryption system. Let q = 2p + 1, p ∼ 21000, Z
∗
q . Alice randomly picks

a ∈ {0, 1, . . . , q− 1} and a generator g of Z
∗
q . The secret key sk = (q, g, a). Alice computes h = ga. The

public key is pk = (q, g, h).
Remark: q, Z

∗
q , g may be universal for a certain community of users.

Encryption: Bob has M ∈ Z
∗
q . He chooses random b ∈ {1, . . . , q− 1} and computes g1 = gb and hb ·M.

The cipher text is C = (g1, hb ·M). Note that hb = (ga)b = gab.
Decryption: Alice has a and computes g−a

1 = g−ab, where −a is with respect to the order of Z
∗
q . Then

g−abhb M = M.
If an adversary knows ga = h and captured (gb, gabM), breaking the encryption means finding M, which

is equivalent to computing gab from ga, gb. By assuming CDH intractability of Z
∗
q , breaking the ElGamal

encryption is intractable.
Everything we have done so far works for any prime q.

4.3.1 Using Z
∗
q does not give a semantically secure encryption

From ga = h and gb = g1, one can compute
(

gab

q

)

using Euler’s Criterion (Theorem 2.5). Say gab ∈ QRq.

Then gab · M ∈ QRq iff M ∈ QRq. Similarly if gab /∈ QRq, then gab · M ∈ QRq iff M /∈ QRq (this was a
homework problem; we can reduce it to a question of parities). Thus if two messages differ in being qr, an
adversary can determine which message it is.

To fix this, we use QRq (for q = 2p + 1 SG) and messages M ∈ QRq. Then CDH intractability holds for
G = QRq, which is a cyclic group of order p, and the resulting encryption is semantically secure [proof not
given].

Drawback to ElGamal encryption: ℓ(M) = log2 q ∼ 1000. Now the ciphertext C = (g1 = gb, hb · M),

and ℓ(g1) = log2 q, ℓ(hb · M) = log2 q. Therefore the ciphertext has twice the length of the message. In
RSA, the ciphertext was approximately the same length.

5 Digital Signatures

Alice wants to “digitally” sign some document M with SIGA(M) such that:

9

1. Given M only Alice can produce SIGA(M).

2. Given SIGA(M) everyone can verify the signature.

There is a secret signature producing key sskA and a public signature verification key psvkA.

5.1 RSA (pure) signatures

Alice produces p, q and n = pq. She also produces e, d as in the RSA encryption. She signs document M
with

SIGA(M) = (M, Md mod n).

Let sskA = (n, d, [p, q]) and psvkA = (n, e). Now to verify, just check that M ≡ (Md mod n)e mod n.
Attacks: For any Y ∈ Z

∗
n, an adversary can compute M̄ = Ye mod n and post (M̄, Y) = SIGA(M̄).

Verifying will give M̄ = Ye mod n, so anyone can sign documents as if they were from Alice, although they
may not have control over what the documents say.

Malleable: Adversary can replace SIGA(M) = (M, Md mod n) with

SIGA(2e M mod n) = (2e M mod n, 2(Md mod n)).

5.2 ElGamal signatures

A hash function H is an assignment9/24

H : {0, 1}∗ → {0, 1, . . . , n− 1} = [0, n− 1]

such that

1. H is efficiently computable.

2. H is collision resistant, i.e., it is intractable to compute x1, x2 ∈ {0, 1}∗ satisfying x1 6= x2 but H(x1) =
H(x2).

Examples of such hash functions: SHA-1, SHA-2, MD-5.
There are also hash functors H = H(−, r) that take random r as a parameter.

Let G be a cyclic group with generator g, |G| = n, where discrete log for G is intractable and computation
of powers of g is efficient. E.g., let q = 2p + 1 SG prime, G = Z

∗
q , |G| = q− 1. Fact: any g ∈ Z

∗
q such that

(g
q

)

= −1 is a generator of Z
∗
q . This is proved in the homework.

Alice is the signer. The secret signature key ssigkA = (G, g, xA
R← [0, n− 1], H), and public signature

verification key is psigverkA = (G, g, gxA, H). Alice has M ∈ {0, 1}∗. She signs using the following steps.

1. Pick random y ∈ [0, n− 1]

2. Computes h = gy.

3. Computes H(M||h) where || stands for concatenation.

1Zero knowledge proof of Sudoku: Take 81 cards and number them 1− 9 nine times. Flip the cards around and number the cards
1− 81. Collect cards 1, 10, 19, . . . into box 1, cards 2, 11, 20, . . . into box 2, etc. Now take all the cards out of one box and show the faces,
which shows that all of 1− 9 appear in column 1. Now do this for columns, rows, and 3× 3 squares.

10

4. Computes a c ∈ [0, n− 1] such that

(gxA)H(M||h) · gc · h = 1G. (5.1)

To do this, note that by taking logg of (5.1), we have

(xA · H(M||h) + c + y) mod n = 0.

Now we can easily compute c.

Alice signs M with SIGA(M) = (M, c, h).
Signature verification: Using psigverkA, the verifier

1. Computes H(M||h), computes gc, and computes (gxA)H(M||h).

2. Verifies (5.1).

Now we want to show that only Alice can sign messages. This signature is in a very strong sense
unforgeable. A signature scheme is existentially unforgeable if an adversary who does not know the secret
signature key of A, and who sees SIGA(M1), SIGA(M2), . . . , SIGA(Mk) cannot produce SIGA(M) different
from any of the above.

Note that if H is not collision resistant, Alice can sign something and then later claim she signed some-
thing else.

We assume that the hash function H(−, r) is Black Box computable. Assume that random parameter r
is included in ssigkA and psigverkA. We slightly modify the signature process described above by using a
new concatenation scheme. Pad M at the end so that ℓ(M) ≥ ℓ(h). Then let M||∗h = Mε1 · · · εℓh such that
ℓ(M) = ℓ + ℓ(h), for some filler ε i. This enforces a unique reading of M||∗h (M is the first half, ε1 · · · εℓh is
the second half).

Proof that El Gamal is existentially unforgeable. Assume adversary who saw the list of signed document can
efficiently produce a new signature SIGA(M) = (M, c, h). New means (M, h) 6= (Mi, hi) for all 1 ≤ i ≤ k.
Now this implies H(M||∗h) 6= H(Mi||∗hi) for all 1 ≤ i ≤ k by non-collision. Adversary wants to sign M
using an h such that M||∗h 6= Mi||∗hi. Because of the black box nature of H(−, r), he must have M, h to
compute H(M||∗h, r). Thus he is also able to forge using H(M||∗h, r′) for r′ 6= r. The adversary produces

((gxA)H(M||∗h,r), c, h) and ((gxA)H(M||∗h,r′), c′, h) such that (5.1) holds. Dividing the two relations we get (h is
canceled out)

gxA(H(M||∗h,r)−H(M||∗h,r′)) · gc−c′ = 1G.

Since c, c′ are known to the adversary who produced the signatures, taking logg of the previous equation,

xA can be computed. This contradicts the intractability of discrete log for G, since all other information was
independent of xA.

6 Zero Knowledge Proofs

Scenario: Alice knows a secret S. For example, given n = pq, Alice knows {p, q}. She wants to prove it to a
verifier.

[GMR] introduced interactive proofs and zero knowledge proofs.
Interactive proof setup: Alice (prover) sends w1 to verifier. Then verifier sends some random c1 ∈ {0, 1}∗

back as a challenge. Then Alice sends r1 and verifier runs V(w1, c1, r1) which returns true/false. This
completes Round 1. Then they do this for k rounds. The verifier accepts statement as true if all V(wi, ci, ri)
are true for 1 ≤ i ≤ k. For the interesting cases, V is assumed to be an efficiently computable function. So
we limit the verifier, but the prover is not yet limited.

We say this interactive proof method is complete if when the prover knows S, the proof will be accepted
every time. The method is sound if when the prover does not know S, the probability of success of accepting

is ≤ 1
2k .

11

6.1 Interactive ZKP of knowledge of
√

y mod n [Fiat-Shamir]

Let n = pq be public, with p, q unknown.9/29 Alice chooses random xA ∈ Z
∗
n and computes yA = x2

A mod n.
She wants to prove to a verifier given yA that she knows xA.

Exchange 1. Prover chooses random u1 ∈ Z
∗
n and sets w1 = u2

1 mod n. Prover sends w1 to verifier.
Verifier chooses random c1 ∈ {0, 1} and sends to P. If c1 = 0: give me

√
w1 mod n. If c1 = 1: give me√

w1yA mod n. Now Prover responds by: if c1 = 0, sends r1 = u1; if c1 = 1, send r1 = u1xA mod n. This
completes round 1, and the Prover and Verifier may repeat for as many rounds as necessary.

Completeness. If Prover knows a
√

yA mod n, then will always be accepted.

Soundness. If Prover cannot compute a
√

yA, then Pr(acceptance)≤ 1
2k if the conversation lasts k rounds.

With probability 1/2 (c1 = 0), Prover has to compute r1 such that r2
1 mod n = w1. With probability 1/2

(c1 = 1), Prover has to compute r̄1 such that r̄2
1 mod n = (w1yA) mod n. If the prover can correctly respond

to both c1 = 0, c1 = 1, it means that in time T (say a minute), he computed r1 such that w1 ≡ r2
1 mod n and

r̄1 such that w1yA ≡ r̄2
1 mod n. Now by the extraction process

(

r̄1

r1

)2

≡ w1yA

w1
≡ yA mod n,

since everything is assumed to be in Z
∗
n. Conversely, if Prover cannot rapidly compute/know

√
yA mod n,

then Pr(passing Round 1)≤ 1/2, since Prover cannot pass both inquiries. Hence we have proved that:

Theorem 6.1. If Prover cannot compute
√

yA mod n in time T, then

Pr(acceptance of k-round conversation) ≤ 1

2k
.

Zero-knowledge aspect of interactive proof. Claim: The Verifier does not learn anything from the interactive
proof that he could not learn (with the same probability) on his own. To show this, we demonstrate that
the Verifier can produce on his own conversations (R1, . . . , Rk) with the same probability distribution as the
conversations of the interactive proofs with the Prover. We consider a general Verifier who is not necessarily
honest. In this case, the Verifier will choose c as a function of what he has already seen: during round i, he
chooses c(yA; r1, . . . , ri−1; w1, . . . , wi).

Lemma 6.2 (Simulation algorithm). Given c ∈ {0, 1}, the Verifier can produce a random pair (w, r) ∈ (Z∗n)2 such
that if c = 0, then w ≡ r2 mod n, and if c = 1, then (wyA) ≡ r2 mod n. The probability distribution of w is the
same as if chosen by the Prover, and independent of c.

Proof. The Verifier first chooses a random r ∈ Z
∗
n. If c = 0, set w = r2 mod n. If c = 1, set w =

(

r2

yA

)

mod n.

In either case, verification of (w, c, r) succeeds2. Since dividing by yA is a bijection Z
∗
n → Z

∗
n, for a fixed c

the probability of any w being chosen is the same as choosing a random r2 mod n, which is the probability
distribution of the Prover.

10/1 We now produce a simulation by a general Verifier inductively on the rounds. Assume that valid rounds
1, . . . , i have already been constructed.

Simulating round i + 1. The Verifier chooses a random c ∈ {0, 1} and then produces (wi+1, ri+1) using
Lemma 6.2. V then sets ci+1 = c(yA; r1, . . . , ri; w1, . . . , wi+1). Note that this choice of c depends on the
just picked wi+1. If ci+1 = c, then the Verifier uses the triple (wi+1, ci+1, ri+1), which is a valid simulated
exchange between Prover and Verifier. If ci+1 6= c, then “rollback”, i.e., pick a new c and repeat the process.
By Lemma 6.2, we know that wi+1 and c are independent variables. Therefore the probability that ci+1 = c
is 1/2. Thus generating round i + 1 takes expected time 2.

2This method can be thought of as shooting a target and then drawing a bullseye around your mark, so it appears that you hit the
bullseye.

12

Inductively producing the rounds, it takes expected time 2k to simulate k rounds. By Lemma 6.2, the
wi have same probability distribution as if picked by the Prover. Therefore the entire simulation has the
same probability distribution as a conversation between the Prover and the Verifier. This shows the zero
knowledge aspect.

The ZKP of knowledge of
√

yA mod n runs in sequential time O(k) for Pr(cheating)≤ 1
2k .

Aside: we can consider replacing sequential conversation with “parallel” conversation where w1, . . . , wk

are all sent at once, then c1, . . . , ck sent back, followed by r1, . . . , rk sent as a reply.

6.2 Non-interactive ZKP of knowledge of
√

y mod n

Scenario: Suppose n is public and the factorization n = pq is not known. Alice chooses random xA ∈ Z
∗
n

and calculates yA = x2
A mod n. Alice makes yA public. A TV satellite has a directory with (Alice,yA),

(Bob,yB), (Charlie,yC), etc. Each TV viewer has a satellite box. If Alice wants to watch a movie and pay for
it, the satellite beams scrambled movie to her, Alice authenticates herself by proving knowledge of xA, and
the satellite send the unscrambling key. This must be done quickly.

Authentication process: Alice chooses random u1, . . . , u10 ∈ Z
∗
n. Set wi = u2

i mod n. Let M = (time

stamp, name of program, w1, w2, . . . , w10). A hash function H(M) = ε1ε2 · · · ε128 ∈ {0, 1}128. Alice sends
the message: (M, r1, . . . , r10) such that if ε i = 0, then ri = ui; if ε i = 1, then ri = (uixA) mod n. Receiver
(satellite) computes H(M) = ε1ε2 · · · ε10 · · · and verifies correctness:

r2
i mod n

?
=

{

wi ε i = 0

(wiyA) mod n ε i = 1
∀i ∈ [1, 10]

Suppose an adversary (cheater) creates u
j
1, . . . , u

j
10 a thousand times and sets w

j
1, . . . , w

j
10 to be the

squares. From the hash function he can get H(Mj) = ε
j
1 · · · ε

j
10 · · · . Since this is random, there is a

1
210 ≈ 1/1000 chance that ε

j
1 = · · · = ε

j
10 = 0. Since the adversary does this 1000 times, he can pick

the instance when this does happen. In this case he can authenticate himself with u
j
1, . . . , u

j
10.

6.3 Digital signature using Fiat-Shamir

We can use the method described in the previous section to digitally sign documents. Take M̄ ∈ {0, 1}∗.
Alice picks random u1, . . . , u20 ∈ Z

∗
n and computes wi = u2

i mod n. Let

Z = (Alice, M̄, w1, . . . , w20)

and compute H(Z) = ε1 · · · ε20 · · · ε128. The signature is then SIGA(M̄) = (Z, r1, . . . , r20).

6.4 ZKP of knowledge of
√

y1, . . . ,
√

y10 mod n

As in the original Fiat-Shamir scheme, assume n = pq where p, q are unknown. Alice chooses random
x1, . . . , x10 ∈ Z

∗
n and sets yi = x2

i mod n for i ∈ [1, 10]. Alice then makes y1, . . . , y10 public. Alice authen-
ticates herself to Bob by proving knowledge of

√
yi mod n. This is a stronger version of the Fiat-Shamir

scheme.

Lemma 6.3. Suppose given yi ∈ Z
∗
n, i ∈ [1, 20] which are quadratic residues mod n, one can efficiently compute,

using an algorithm AL, for some i < j, the value zij =
√

yi
y j

mod n. Then AL efficiently leads to factorization of n.

Proof. Randomly choose u1, . . . , u20 ∈ Z
∗
n. Compute y1 = u2

1 mod n, . . . , y20 = u2
20 mod n in time T. Ap-

ply AL(y1, . . . , y20) = (i, j, zij) so that z2
ij mod n = (yi/yj) mod n. We also know that (ui/uj)

2 mod n =

13

yi/yj mod n. Therefore since ui/uj is random,

gcd
(ui

uj
− zij mod n, n

)

= p or q

with probability 1/2 by Proposition 2.1.

10/6 Assume there exists some commitment COM() function [see Section 11]. The symmetric group S10

consists of all permutations π of the set {1, . . . , 10}. Bob (verifier) chooses π ∈ S10 randomly (do this by
choosing randomly from [1, 10] without replacement). Bob sends COM(π) to Alice (prover).

Alice randomly chooses u1, . . . , u10 ∈ Z
∗
n, sets wi = u2

i mod n, and sends w1, . . . , w10 to Bob. Bob sends
π as a challenge for Alice to show

√
y1wπ(1), . . . ,

√
y10wπ(10) mod n. Bob cannot change π based on the wi

he sees because he is already committed by COM(π). Alice now sends back ri = xi · uπ(i) mod n. Bob

verifies r2
i ≡ yiwπ(i) mod n. Commitment is needed for zero knowledge.

Completeness. If P knows
√

y1, . . . ,
√

y10 mod n, then P will always be accepted by V.

Soundness.

Theorem 6.4. If an adversary AD can for random y1, . . . , y10 squares mod n pass the test (be accepted) then AD can
factor n.

Proof. If AD cannot respond correctly (in time T) to any π ∈ S10, he is dead. Assume there exists one
π̄ ∈ S10 for which he responds correctly in time T.

Pr(π chosen by V = π̄) =
1

10!
≈ 1

3, 600, 000
.

Assume that there is another π ∈ S10 such that AD can respond correctly to both π̄ and π.
Claim: In this case ∃ℓ, m, ℓ 6= m so that AD can compute in time 2T a z such that z2 ≡ (yℓ/ym) mod n.

This would imply that AD can factor n by Lemma 6.3.
Proof of claim: AD can compute in time T the square roots

√

y1wπ(1), . . . ,
√

y10wπ(10) mod n

(the correct response to challenge π). Also AD can compute in time T the square roots

√

y1wπ̄(1), . . . ,
√

y10wπ̄(10) mod n

(the correct response to challenge π̄). Since π 6= π̄, we also have π−1 6= π̄−1. Thus there exists k ∈ [1, 10]
such that π−1(k) 6= π̄−1(k). Since AD knows

√

yπ−1(k)wk mod n and
√

yπ̄−1(k)wk mod n, AD also knows

by division
√

yπ−1(k)

yπ̄−1(k)
mod n.

This proves the claim. We conclude that for random y1, . . . , y10, Pr(AD passes test)≤ 1
10! ≈ 1

3.6×106 .

10/8 Zero knowledge aspect.

Theorem 6.5. An adversary AD cannot learn to authenticate himself even when after observing any number of
authentications by Alice.

Proof. AD observes actual interactive authentications Alice ⇄ Server (Verifier). Now we simulate authen-
tications with the same probability distribution.

1. AD knows Alice’s public y1, . . . , y10.

14

2. AD chooses a π ∈ S10 (with same distribution as verifier).

3. AD computes COM(π).

4. Randomly chooses r1, . . . , r10 ∈ Z
∗
n.

5. Set wπ(i) = r2
i /yi mod n.

6. Now the exchange (w1, . . . , w10; π; r1, . . . , r10) is valid.

As in the original Fiat-Shamir ZKP, we note that the wi have the same probability distribution as if chosen
by the Prover. Therefore observing real authentications gives no information to the adversary.

6.5 A computationally efficient bijection Sk
∼= [0, k!− 1]

Let 0 ≤ m ≤ k!− 1. Assume (k− 1)! ≤ m and write as m = r1(k− 1)! + m1 for r1 ≤ k− 1 and m1 < (k− 1)!.
Repeating, we have

m = r1(k− 1)! + r2(k− 2)! + · · ·+ rk−1

where 0 ≤ rk−1 ≤ 1, . . . , 0 ≤ r1 ≤ k − 1. We map m ∈ [0, k! − 1] 7→ (r1, r2, . . . , rk−1). We construct a
permutation in Sk from (r1, . . . , rk−1). Start with a 1. We can put 2 on the left or right, which we decide
based on rk−1 = 0 or 1. Now we have three places to put 3, which we decide based on what rk−2 equals.
Continuing, we get some permutation of 1, . . . , k at the end. It is easy to see that this gives a bijection
Sk
∼= [0, . . . , k!− 1].

6.6 Non-interactive ZKP of knowledge of
√

y1, . . .
√

y10 mod n

Alice picks random u1, . . . , u10 ∈ Z
∗
n. Computes wi = u2

i mod n. Now the hash function

H(y1y2 · · · y10w1 · · ·w10) = ε1ε2 · · · ε128 7→ π ∈ S10

where we truncate/mod the hash value to get a number in the interval [0, 10!− 1] and use the bijection
[0, 10!− 1] ∼= S10 given in the last section. Now Alice posts a signature of (y1, . . . , y10; w1, . . . , w10; r1, . . . , r10)
as the correct response to π.

7 Overview of Financial Cryptography

7.1 Time Lapse Cryptography

Time lapse cryptography service (TLCS) publishes data of time T1,10/20 encryption key e1 (public encryption
key), T2, e2, etc. At time T1, the TLCS publishes d1, the corresponding decryption key. Before time T1, no
one knows d1. After that time, no one can stop the corresponding item from being decrypted.

7.2 Vickery auctions

At a sealed bid auction, there are bidders B1, . . . , Bn that bid prices x1, . . . , xn on an item. Each bidder has a
key ki and sends encrypted

Ek1
(x1), . . . , Ekn

(xn)→ Auctioneer

Suppose that x1 > · · · > xn. Then at the end of the auction, B1 gets the item and pays x2. The bidders then
want a ZKP of validity of the auction, without revealing bid prices.

15

7.3 Regulation/compliance

ZKPs of compliance [Hal Varian].
Scenario: there are hospitals H1, . . . , Hk and interns I1, . . . , Im. Interns have list of hospital they want to

go to. Hospitals then match up/rank interns, and then have a proof of correctness without divulging the
actual rankings.

7.4 Multi-party computations

There are computing entities P1, . . . , P15. Secrets x, y are distributed as shares x1, . . . , x15, y 7→ y1, . . . , y15

to the entities. As long as at most 5 entities are improper, multi-party computation will compute whether
x > y while holding complete secrecy (no one finds out the values of x, y).

7.5 Homomorphic encryptions

Paillier encryption is a homomorphic encryption. For n ∼ 22000, the encryption En() satisfies

En(x1, r1) + En(x2, r2) mod n2 = En((x1 + x2) mod n, (r1r2) mod n)

Computations are mod22000, which is a lot of bits.

8 Secret Sharing

8.1 Classical secret sharing [A. Shamir]

8.1.1 Polynomial interpolation

Let E be any field.

Theorem 8.1. Suppose we have (x1, y1), . . . , (xk, yk) ∈ E × E with i 6= j =⇒ xi 6= xj. There exists a unique
polynomial

f (t) = a0 + a1t + · · ·+ ak−1tk−1 ∈ E[t]

such that f (xi) = yi for all i ∈ [1, k].

Proof 1.




1 x1 x2
1 . . . xk−1

1

1 xk x2
k . . . xk−1

k









a0

ak−1



 =





y1

yk





The above matrix is known as the Vandermonde matrix, and it is well known that it has determinant

∏i<j(xi − xj) 6= 0. Thus the system of equations has a unique solution a0, . . . , ak−1.

There is a k2 log k computation of the inverse of the Vandermonde matrix.

Proof 2 (Lagrange Interpolation). Define the Lagrange polynomials

gi(t) =
(t− x1) · · · ̂(t− xi) · · · (t− xk)

(xi − x1) · · · ̂(xi − xi) · · · (xi − xk)
.

We have that gi(xj) = δij. Now just use yi as the scalars.
Uniqueness: assume f1(t), f2(t) both have degree k− 1. Then f1(t)− f2(t) has roots at xi. There are k

roots x1, . . . , xk, but the degree is k− 1, so the difference must be identically 0.

16

8.1.2 (n, k) secret sharing algorithm

Let there be n persons P1, . . . , Pn and a secret s. An (n, k) secret sharing is a protocol where each Pi gets a
share si of s so that

1. Any k shares completely determine s.

2. Any k− 1 (or fewer shares) reveal no information about s.

A. Shamir proposed the following secret sharing algorithm. Dealer takes s ∈ Fp and n < p. Assign each Pi

a distinct 0 6= αi ∈ Fp. Dealer chooses a1, . . . , ak−1 ∈ Fp randomly. Defines

f (t) = s + a1t + · · ·+ ak−1tk−1.

Let si = (αi, f (αi)).

Theorem 8.2. The above is an (n, k) secret sharing of s.

Proof. (1) is obvious by polynomial interpolation. (2) Let s1, . . . , sk−1 be given. Consider

(0, r), (α1, s1), . . . , (αk−1, sk−1)

where r ∈ Fp is completely random. Now we can use polynomial interpolation to get h(t) such that h has
constant term r and h(αi) = si. Thus no information is revealed.

10/22 Some of the shares being given may be false shares. Solution: the dealer gives signed shares (si, SIGD(si))
to Pi. Now the shares may be verified when pooled together.

8.2 Check vectors

Suppose we have a dealer D with some secret s ∈ Fp. He sends it to intermediary I who will later pass
it to a recipient R. The recipient wants to verify that he is receiving the same secret that I was given. The
motivation for this is that D may have sold the rights to some product to I, who is now distributing to R.

D chooses a, b ∈ Fp randomly and calculates r = as + b ∈ Fp. He sends a, b to R at the beginning, and
sends s, r to I. Then when I wants to pass on the secret, he sends s, r to R who can check that the relation
as + b = r holds. The probability that, given no other knowledge, I can [randomly] generate a pair r′, s′

such that r′ = as′ + b is 1/p.
Check vectors are further explored in PS 5, Problem 4.

8.3 Verifiable secret sharing

What if the dealer D is dishonest and doesn’t send the correct secrets?
Suppose that Fp, G a cyclic group, |G| = p, and generator g ∈ G are all public. Assume gx reveals

nothing about x, i.e., intractability of discrete log. Dealer D wants to (n, k)-share a random s ∈ Fp amongst
P1, . . . , Pn where n < p. The P1, . . . , Pn can broadcast values. D takes random a1, . . . , ak−1 ∈ Fp and posts
c0 := gs, c1 := ga1 , . . . , ck−1 := gak−1. The secret is logg c0 = s.

f (t) = s + a1t + · · ·+ ak−1tk−1

Let P1, . . . , Pn correspond to coordinates 1, . . . , n, which is possible since n < p. Now let si = f (i). The
Dealer should send si to Pi.

We show that Pi can verify that his share from D is proper. Pi computes gsi . He also calculates and
checks that

c0ci
1ci2

2 · · · cik−1

k−1 = gs+a1i+···+ak−1ik−1
= g f (i) = gsi .

If true, this asserts that f (i) = si. If Pi is honest and verification does not succeed, he posts “My share is
false.”

Assume that there are < k bad people.

17

Theorem 8.3. If there were m postings of claims of falsity, and n−m ≥ 2k− 1, then the secret s is reconstructible.

Proof. There are 2k− 1 players, say P1, . . . , P2k−1 who did not post claim of false share. There are at most
k− 1 bad players amongst the above 2k− 1. Therefore there are at least k good players who have proper
shares and upon demand will reveal their shares. Since Fp → G : x 7→ gx is a bijection, we will know which
shares si are proper by the verification. To reconstruct, the people with proper shares will pool their shares.
There will be at least k such shares, so f (t) can be interpolated.

Note that since gs is publicly available, if people know s ∈ [0, 35], they can brute force find s. To fix this,
take secret s̄ ∈ {0, 1}100, where p ∼ 2200. Dealer takes random r ∈ {0, 1}100 and sets s = r ∧ s̄ (concatenate).

8.4 Sharing multiple secrets

In this section, assume that < k people are gossipy, but not malicious. Everyone else is good and follows
protocol.

8.4.1 Linear combinations of secrets

Suppose there are dealers D1, . . . , Dm with values v1, . . . , vm ∈ Fp.10/27 The coefficients λ1, . . . , λm ∈ Fp are
publicly known. The dealers want to jointly create an (n, k) sharing of λ1v1 + · · ·+ λmvm amongst persons
P1, . . . , Pn that does not reveal vi.

Each Dj creates (n, k) sharing of λjvj via

f j(t) = λjvj + c
j
1t + · · ·+ c

j
k−1tk−1,

letting f j(αi) be Pi’s share of λjvj. Assume there are secure private communication links Pi ↔ Pℓ and
Dj ↔ Pi. Dj sends f j(αi) → Pi. Pi has m shares f1(αi), . . . , fm(αi). The share for λ1v1 + · · ·+ λmvm is then
f1(αi) + · · ·+ fm(αi). Interpolating will give the linear combination.

Note that since there are < k gossipy people, there will not be enough people to pool shares and recon-
struct vi, since that is a breach of protocol.

8.4.2 Products of secrets

Suppose that secrets a0, b0 have been (n, k) shared with P1, . . . , Pn using degree k − 1 polynomials f , g.
Assume 2k ≤ n. Then there is a way to (n, k) share a0b0 such that reconstruction does not need to reveal a0

or b0.
Observe that deg h(t) = deg f (t)g(t) = 2k− 2 (we multiply together two k− 1 degree polynomials with

different secrets).
h(t) = a0b0 + d1t + · · ·+ d2k−2t2k−2.

Consider the following Vandermonde matrix A:







1 α1 . . . α2k−2
1

...
...

1 α2k−1 . . . α2k−2
2k−1

















a0b0

d1
...

d2k−2











=







h(α1)
...

h(α2k−1)






=







f (α1)g(α1)
...

f (α2k−1)g(α2k−1)







The α1, . . . , α2k−1 are public knowledge. Thus anyone can calculate A−1. Let the first row of A−1 be
(λ1, λ2, . . . , λ2k−1). Then

λ1h(α1) + · · ·+ λ2k−1h(α2k−1) = a0b0.

Now if we let m = 2k− 1 with dealers D1, . . . , Dm being P1, . . . , P2k−1, by Section 8.4.1, a0b0 can be (n, k)
shared amongst P1, . . . , Pn.

18

9 Time Lapse Cryptography using ElGamal

10/29
By Adrian

There is a trusted secure bulletin board. Every person Pi has a digital signature SIGi, a private key si known
only to Pi, and a public verification key vi. Recall for Elgamal we have a cyclic group G with order p and an
encryption key h = gx, both of which are public. Encryption of M is done by choosing y ∈ Z

∗
p randomly

and then setting E(M) = (gy, hy M).
Now the encryption: every Pi chooses xi ∈ Z

∗
p randomly and posts SIGi(gxi) on the bulletin board. A

naive strategy is to encrypt using ElGamal by taking h = gx1 · · · gxn from each person. Decrypt by receiving
xi from each person. But this has a lot of problems – a person could refuse to share their part.

The true encryption: every person Pi will (n, k) share his part xi of the key, producing polynomials

fi(t) = xi + ai
1t + ... + ai

k−1tk−1

and setting xij = fi(j), which will be Pj’s share of xi. Then Pi securely sends SIGi(id, Time, i, j, xij) to Pj.

Also, Pi posts SIGi(id, Time, gxi , gai
1 , . . . , gai

k−1) on the bulletin board, which enables share verification. If Pj

wants to claim that the xij he got from Pi is not a share of xi by fi(t), Pj will post SIGi(id, Time, i, j, xij). Then
using the share verification data, everyone can check whether the accusation is justified.

The TLCS consists of the bulletin board and the parties P1, . . . , Pn. Any outside user can then use this
TLCS service to encrypt and then decrypt at a later time.

To encrypt, before time T any user goes to the bulletin board and chooses the gxi ’s which are not justifi-
ably accused of being incorrect. Suppose I ⊂ {1, ..., n} contains the indices of the people who did not post
wrong shares. Then the user sets h = ∏i∈I gxi , chooses y randomly, and encrypts E(M) = (gy, hy M).

To decrypt, we assume there are at least k honest parties. By assumption, they have correct shares of
each of xi for each i ∈ I. Then they can reconstruct xi together for each i ∈ I, recreate h, and decrypt as in
ElGamal.

In this presentation of TLC, we have assume a single trusted secure bulletin board. Things become
more complicated when there are multiple bulletin boards, some of which may be improper. This issue is
addressed by using a Byzantine Agreement protocol in Section 10.1.

10 Byzantine Agreement

11/18
By Adrian,
with edits

Origins of the question: suppose there are n generals surrounding a city and one master commander. At
least m generals must attack the city simultaneously in order to succeed. Some generals, and possibly the
commander, are dishonest. Each general receives a private message from the commander telling him to
attack or not. The generals want to talk amongst themselves such that they can guarantee that either all
proper generals will attack simultaneously or nobody attacks.

Fact: if there are k improper generals, then it requires at least k rounds to reach a Byzantine Agreement.
If k < n/3 they can reach agreement as follows: first round, each general sends their value to every other
general; in the ith round, each general sends the values they received from everybody else in the (i− 1)st
round. Not great because exponential amounts of data exchanged.

Fact: more recent work has given an algorithm to do this with polynomial amounts of data.
Fact: it is impossible to reach complete Byzantine Agreement in the case of asynchronous messaging.
Fact: you can do it probabilistically with very little data. It even generalizes to the asynchronous case.

We will do this today:
Suppose there are n generals P1, ..., Pn and fewer than k improper generals such that n > 6k. Each Pi has a

message Mi. We assume the synchronous case, so there is a common clock which defines common rounds
(R1, R2, ...) which run ([0, T], [T, 2T], ...). Also assume that there is also a common public coin which is
flipped and whose value is received simultaneously by each general. The value of the coin flip is revealed
at time mT − T/2 in round m. (There are public services which generate public random numbers, but
generating the common coin is also an interesting problem. It might seem that Byzantine Agreement (BA)

19

is needed to generate the common coin, but there are easier ways of doing it as well.) Also assume a default
common message d.

Conditions:

0. Every proper player (PP) halts.

1. Every PP has the same message at end.

2. If all PP had Mi = M, then their final common value is M.

A Faulty-Improper player (FP) is a player who does not follow protocol.

Definition 10.1. An (n, k) Byzantine Agreement Protocol is one that if executed by n players, ≤ k of whom
are faulty, then agreement (i.e., 0,1,2) is achieved.

We present an (n, k) BA protocol. The players know each other, and in particular know that there are n
players total.

Each Pi has variables m(i), count(i), temp(i), and c(i). At start, set m(i) = Mi (i.e. what he currently
thinks is the message) count(i) = 0. Then at round m:

1. Pi sends m(i) to all Pj’s.

2. Receive m(j) from others.

3. Set temp(i) to be the plurality of received messages including his own (i.e. most common message).
If there is a tie, choose one randomly.

4. Set count(i) to be the number of times temp(i) was received.
Assume (1)-(4) were done in the first half of round m, i.e., [(m− 1)T, mT− T/2].

5. (Lottery) Set c(i) to be the value of the common public coin (at time mT − T/2).

6. (Decision) If count(i) > n/2 and c(i) = 0 OR count(i) ≥ n− 2k and c(i) = 1, then set m(i) = temp(i).
ELSE set m(i) = d (default common message).

Theorem 10.1. Assume L rounds R1, . . . , RL of the BA protocol are run. If during execution of the (n, k) BA
protocol, no more than k < n/6 players became faulty, then Byzantine agreement as per 0,1,2 is achieved with
Pr≥ 1− 1/2L. Output value is m(i) at end of RL.

There is also another protocol that gets BA in an expected number of rounds.
Notation: let G denote the set of proper players. Assume n− k ≤ |G|.

Lemma 10.2. If Mi = M for > n− 2k proper players, then m(i) = M for all later rounds for all proper players.

Proof. The number of proper players > n− 2k ≥ n/2.

Lemma 10.3. After performing one round (given arbitrary messages) the probability that all proper players end with
a common message is at least 1/2.

Proof. Assume that one proper Pj has updated count(j) ≥ n− 2k. Of these n− 2k received equal values, at
most k are from improper players. Then any other proper Pi will have at least n− 2k− k > n/2 messages
agreeing with temp(j). Hence all proper Pi will have count(i) > n/2, so their messages will agree if the
common coin c(i) = 0 for that round in this case.

Otherwise, if all proper Pj have count(j) < n − 2k after Step 4, then they will all choose the default
message if the common coin c(i) = 1 for that round.

Proof of Theorem 10.1. Once the proper players have agreed, by Lemma 10.2, they will continue to agree.
Hence, after L rounds the proper players will not reach an agreement with probability at most 1/2L. This
proves the theorem.

20

10.1 Byzantine agreement: applications to TLC

Suppose there are parties P1, ..., Pn that want to execute the TLC service. Number of improper players
k < n/6. There are B1, . . . , Bt bulletin bounds at least one of which is proper. Then TLC is possible.

Recall that the objective of TLC is to create an encryption key gx by time T0, where x will be revaled at
a later time T1 = T0 + δ. Consider Fp, a cyclic group G of order p, and a generator g ∈ G (all public). Every

Pi chooses xi ∈ Fp randomly and ai
1, ..., ai

k−1 ∈ Fp. Set

fi(t) = xi + ai
1t1 + · · ·+ ai

k−1tk−1.

The j-th share of xi is xij = fi(j). Signed SIGi(xij) sent to Pj. Then Pi creates a signed

Ver(i) = SIGi(gxi, gai
1 , . . . , gai

k−1)

and also sends to every Pj.
Phase I: For Ver(i), P1, . . . , Pn run BA on having the same Ver(i). This is done in parallel for all i (run n

BA in parallel). The result is for every Pi ∈ G all Pj ∈ G will have the same final value Ver(i). For some
improper party (IP) Pℓ, the Pj ∈ G will end with “faulty Pℓ”. For other IP Pℓ, the proper Pj ∈ G will end
with agreement on Ver(ℓ).

Phase II: Every Pi who has objection to some xℓ,i sends xℓ,i to all. Then the players do BA. At the end of
Phase II, some Pℓ’s were disqualified by all Pj ∈ G. No Pi ∈ G is disqualified by proper players.

Question is: which gxi will be used in the making of encryption key? Some bad guys might give proper
Ver(i) but then walk away when its time to decrypt.

Phase III (uses the clause n− 2k ≤ count(i) in Decision): Currently parties G agree for every surviving
Pj. Yes(Pj) = I have received share from Pj. No(Pj) = I have not received share from Pj. The parties run
BA on Yes/No(Pj). If fewer than k proper parties Pi ∈ G have received a share from Pj, then every Pi ∈ G
receives in round 1 at least n− 2k = (n− k) − k (recall |G| ≥ n− k) No(Pj) messages from P1, . . . , Pn. At
the end of Phase III, all Pi ∈ G have agreed on Q qualified players. If Pj ∈ Q, then all of his information is
in the hands of the G proper, and these proper players G have at least k shares xj.

End Game: Every Pi ∈ G posts on all BB’s SIGi(Pj, Ver(j)) for all agreed qualified players in Q. This

finished at time T0. A user U needing an encryption scans all BB’s and chooses all gx j that received≥ n− k
postings SIGi(Pj, Ver(j)) on any one BB. Since the postings on BB’s are signed, even improper BB’s cannot
forge signatures of postings. Therefore if≥ n− k postings SIGi(Pj, Ver(j)) do appear, they must also appear
on the proper BB. Since≤ k parties are improper and the proper parties have all reached agreement through
private communication, the postings exactly correspond to the Pj ∈ Q. The user’s public key is

gx = ∏
Pj∈Q

gx j .

Last Remark: BA stopping in expected 3–4 rounds. At the end of each round with Pr ≥ 1/2 all Pi ∈ G
are in agreement. In the next round every Pi ∈ G will have n− k ≤ count(i). Pi knows all Pj ∈ G. All Pi ∈ G
have agreed that count(j) ≥ n− 2k. Hence settle on temp(j). Pi stops and sends message Pi-stopped to all.
[??????]

11 Commitment Methods

Suppose that A, B are involved in a protocol. Player A has a value v and sends COM(v) to B to commit to
v. Later A will send v to B to decommit, with the following properties:

1. Before A decommits, B has no information on v.

2. (Binding) A cannot decommit using v′ 6= v.

21

One method: Use hash function H. Choose r ∈ {0, 1}100 randomly and then COM(v) = H(v||r). This
is not absolutely unbreakable, but with a good hash function it is computational difficult to find a second
value to decommit.

Another method: Given group G of order p and two generators 1 6= g1 6= g2 ∈ G public. Assume
discrete log for G is intractable. If A wants to commit to v ∈ Z

∗
p, he chooses r ∈ Z

∗
p randomly. Then

compute COM(v) = gv
1gr

2 =: g0 ∈ G. To decommit, A
v,r→ B. By the midterm, for any v′ there exists r′ such

that gv′
1 gr′

2 = g0. Therefore (1) is satisfied. If A can decommit using v′ 6= v, then gv
1gr

2 = gv′
1 gr′

2 and A can

compute logg2
g1 = r′−r

v−v′ . Discrete log is intractable, so we must have v′ = v. Thus COM() is binding.

12 Straight Line Computations

12.1 Introduction

Notes in this section are taken from Prof. Rabin’s lecture slides. Sections 12.1.1 and 12.1.2 describe the
problems we would like to develop technology to solve.

12.1.1 Secure, secrecy-preserving auctions

A Vickrey auction for an item involves n bidders B1, . . . , Bn bidding values x1, . . . , xn. If x1 > x2, x2 ≥
x3, . . . , xn then B1 gets the item and pays x2.

We have an Auctioneer called an Evaluator-Prover (EP) to whom B1, . . . , Bn submit their bids in a secure
way. The EP computes the winner, the price he pays, and posts a secrecy-preserving proof of correctness.
Bidders want to know correctness of the announced result but wish to keep their bids secret.

To this end we need to support evaluation and proofs of correctness for predicates such as xi > xj.

12.1.2 Matching Problems [H. Varian]

Entities: E1, . . . , Ek; candidates: C1, . . . , Cm. E1 has a preference list C1
i1

, . . . , C1
im1

. C1 also has a preference list

E1
j1

, . . . , E1
jk1

. Preference lists are secret. EP computes stable matching and can ZKP correctness.

12.1.3 Existing Technologies

Varieties of ZKP and arguments:

• Proving x ∈ L an NP language

• Proving circuit satisfiability (at the bit level)

• Using homomorphic encryption to prove statements about encrypted values

• The method of obfuscated circuits [A. Yao]

• Multiparty computations, hiding inputs, intermediate result

12.1.4 Rabin’s solution

Suppose we have values x ∈ Zp for a prime p ∼ 232. We introduce a random representation RR(x) =
X = (u, v) ∈ Zp ×Zp, which has value val(X) = (u + v) ≡ x mod p. To make a random representation,
simply take random u ∈ Zp and set v = (x − u) mod p. To commit to a random representation, use
COM(X) = (Ek1

(u), Ek2
(v)). Auctioneer wants to prove statements such as val(X) + val(Y) = val(Z)

without revealing x, y, z.

22

Example of addition: p = 17, x = 7, y = 7, x + y = z = 14. X = (3, 4), Y = (15, 9), Z = (8, 6). Auc
posts (10,−10). Verifier takes random c ∈ {0, 1}. If c = 0, then opens “envelopes” of first coordinate to see
3 + 15 = 8 + 10. Never open envelopes of both first and second coordinate!

Definition 12.1. A straight line computation (SLC) is a sequence of values

x1, . . . , xn, xn+1, . . . , xN (12.1)

in Fp where

1. x1, . . . , xn are inputs (e.g., bids submitted by B1, . . . , Bn).

2. ∀m > n, ∃i, j < m such that xm ≡ (xi + xj) mod p or xm ≡ xixj mod p.

3. xN = f (x1, . . . , xn) for some f ∈ Fp[x1, . . . , xn] is the output of the SLC.

In a generalized SLC, we also allow

xm =

{

1 if xi < xj

0 if xi ≥ xj

where comparisons are done as numbers in [0, p− 1].

A translation of the SLC (12.1) is a sequence

X1, . . . , Xn, Xn+1, . . . , XN (12.2)

for Xi ∈ Fp ×Fp where

1. X1, . . . , Xn are random representation of x1, x2, . . . , xn.

2. If xm = xi + xj in the SLC, then Xm = Xi + Xj.

3. If xm = xi · xj, then Xm is a random representation of xixj.

12.2 The model

We assume that there are n parties P1, . . . , Pn respectively holding input values x1, . . . , xn. The parties wish
to perform a SLC on the inputs and obtain the output f (x1, . . . , xn). They want this to be done in a secrecy
preserving manner where nothing is revealed about the inputs and intermediate calculations except the
final output value. At the same time the protocol must provide a ZKP of correctness of the output.

An Evaluator-Prover (EP) is the entity who receives the inputs x1, . . . , xn from the parties, outputs
f (x1, . . . , xn) and provides a ZKP of correctness of the output value.

12.3 Translation of inputs

Each party Pi creates 45 random representations Xi
1, . . . , Xi

45 of xi. This is done using a random number

generator RNG taking seed si
1. Pi sets RNG(si

1, j) = vi
j, ui

j = xi − vi
j mod p, and Xi

j = (ui
j, vi

j) for j ∈ [1, 45].

For commitment, a second seed si
2 is used to generate encryption keys. Pi sets RNG(si

2, j) = ki
j for j ∈ [1, 90].

Then
COM(Xi

j) = (Eki
2j−1

(ui
j), Eki

2j
(vi

j)), j ∈ [1, 45].

Pi securely sends to EP s1
1, s1

2, x1 and

SIGP1
(COM(Xi

1), . . . , COM(Xi
45)).

2For a thorough and detailed account of SLCs, refer to http://isites.harvard.edu/fs/docs/icb.topic627920.files/SLC.pdf.
From here on, I will also abandon attempts to provide dates of lectures, since everything is in one big conglomerate.

23

EP checks that input from Pi is proper. To do this:

1. Generates Xi
1, . . . , Xi

45 using seed si
1.

2. Generates k1
1, . . . , k1

90 using seed si
2 and also computes the encryptions COM(Xi

j).

3. Verifies Pi’s signature on COM(Xi
1), . . . , COM(Xi

45).

Next, EP posts SIGPi
(COM(Xi

1), . . . , COM(Xi
45)) for i ∈ [1, n]. The auction is closed.

Put the random representations of x1, . . . , xn from P1, . . . , Pn into a matrix M.

M =





X1
1 . . . X1

45

Xn
1 . . . Xn

45





Before ending the auction, the EP posted SIG(COM(M)). Since the commitments were signed by parties
P1, . . . , Pn, the values of M cannot be changed by EP at a later time in the ZKP.

Using the seeds si
1, the EP extends M to give K additional random representations of each xi. The matrix

with all extra representations is

Me =





X1
1 . . . X1

45 X1
45+1 . . . X1

45+K

Xn
1 . . . Xn

45 Xn
45+1 . . . Xn

45+K





Let M+
e consist of the columns of Me not in M. Using si

2 to generate new keys, EP posts COM(M+
e). The

seeds are used for efficiency of storage.
We say that X1

1 and X1
2 are pairwise value consistent (pvc) if val(X1

1) = val(X1
2). EP and Ver agree on

L := 20 (any number in this vicinity also works). Conduct a ZKP using all 45 input columns (all of M).

Theorem 12.1. If fewer than 45− L columns of M are pvc or fewer than (1− 2
L)K of M+

e are pvc with the 45− L

pvc columns of M, then Pr(accepted under the ZKP)≤ 1/108.

Proof. Ver randomly creates 45 n× (L + 1) matrices Me,1, . . . , Me,45. As an example, we consider Me,1. First
column of Me,1 is column 1 of M, and the other L columns randomly chosen from M+

e . EP wants to ZKP
to Ver that the columns of Me,1 are pvc. To do this, for every pair, e.g., X1

1 , X1
46, the EP gives Ver z ∈ Fp

such that X1
1 = X1

46 + (z,−z). Ver randomly chooses c1 ∈ {1, 2}. The EP reveals the c1 component of all
representations in Me,1. This is done for every Me,i.

Lemma 12.2. If fewer than (1− 2/L)K of the columns of M+
e are pvc, then Pr(accept)≤ 1/108.

Proof. Consider column 1 of M and Me,1. In the ZKP of EP and Ver, acceptance will happen if either (a) all
columns of Me,1 are pvc, or else (b) the random challenge c1 ∈ {1, 2} to open the c1 component of each repre-
sentation in Me,1 does not catch inconsistency. (a) By assumption there are fewer than (1− 2/L)K columns
of M+

e that have the same value as the first column of M. Therefore Pr(a occurs)< (1− 2/L)L ≈ 1/e2.
Next if the columns of Me,1 is not pvc, then passing the challenge depends on choice of c1. Therefore Pr(b
occurs)≤ 1/2. Therefore Pr(Ver accept ZKP for Me,1)≤ 1/2 + 1/e2. To justify summing the probabilities, we
may either use heavy probabilistic analysis to show independence or argue that K ≫ L makes the difference
insignificant. [Probabilistic analysis incomplete.] Hence Pr(Ver accepts Me,1, . . . , Me,45)≤ (1/2 + 1/e2)45 ≈
1.37 · 10−9.

Lemma 12.3. Assume that more than (1 − 2/L)K of the columns of M+
e are pvc. If fewer than 45 − L of the

original 45 columns of M are value consistent with the (1 − 2/L)K majority of additional columns, then Pr(Ver
accepting). 1/220.

24

Proof. Under the above assumptions there are at least L columns of M each not value consistent with the
majority. Say the fifth column of M is not value consistent. Ver will accept ZKP of Me,5 if either (a) all
additional L columns of Me,5 are taken from the 2/L · K inconsistent with majority, or (b) Me,5 is not pvc
and random challenge c5 ∈ {1, 2} fails to uncover. Pr(a occurs)≤ (2/L)L. As usual, Pr(b occurs)≤ 1/2.
Therefore Pr(Ver accepts all L inconsistent columns)≤ (1/2 + (2/L)L)L ≈ 1/2L.

The conclusion is that Pr(Ver accepts M and Me under the assumptions of the theorem) ≤ 1/2L +
1/108.

Result: if Verifier accepts, then essentially of the untouched columns of Me, a proportion of 1− 2
L are

pvc (for L = 20, that’s 9/10, which is a lot). In the course of the proof one component of each column of M
and 45L columns of M+

e are revealed. Thus the EP has K− 45L columns that he can reveal in future ZKPs,
of which Ver is convinced a fraction 1− 2

L = 9/10 of are pvc with 45− L = 25 majority columns of M.

12.4 Building a translation of SLC; ZKP of correctness

The EP takes inputs x1, . . . , xn and computes the SLC as in (12.1) to get output xN = f (x1, . . . , xn). Let
X1, . . . , Xn be a translation of x1, . . . , xn. We want to extend this to a translation of the SLC (12.1) as in (12.2)
in such a way that ZKPs of correctness are possible.

For m where xm = xi + xj, we just let Xm = Xi + Xj.
Consider m where xm = xixj for i, j < m to the SLC. Let Xi = (ui, vi) and Xj = (uj, vj). The EP chooses

random r2
m, r3

m ∈ Fp and sets

X1
m = (uiuj, vivj) (12.3)

X2
m = (uivj + r2

m,−r2
m) (12.4)

X3
m = (ujvi + r3

m,−r3
m) (12.5)

Define Xm = X1
m + X2

m + X3
m. Now val(Xm) = uiuj + vivj + uivj + viuj = (ui + vi)(uj + vj) = xixj = xm.

We will later see that there is a problem when xi is both a multiplier (xm = xixj) and multiplicant
(xm = xjxi). To fix this, for every xi which in the SLC is both multiplier and multiplicant, EP introduces in
the translation an additional random representation RXi of xi. So the final translation looks like

X1, . . . , Xn, RX1, . . . , RXn, . . . , Xm, . . .

For the EP to verify to Ver that this is indeed a translation of the SLC, the following aspects must be
considered.

1. Ver chooses a random challenge c ∈ {1, 2}. If c = 1, then all first coordinates of the translation
are revealed, and Ver checks that all addition relations are true, val(Xi) = val(RXi), and for any
xixj = xm, the first coordinate of X1

m is uiuj. Similarly if c = 2, then all second coordinates of the
translation are revealed, and Ver checks that all addition relations are true, val(Xi) = val(RXi), and
for xixj = xm, the second coordinate of X1

m is vivj.

2. Check correctness of all relations (12.4). Ver asks for the first coordinate of Xi and the second coordi-
nate of Xj. Ver also asks for both coordinates of X2

m and checks that uivj = val(X2
m).

Problem: what if xi is both multiplier (xm = xixj) and multiplicant (xm = xjxi) (e.g., xm = x2
i). This

means you have revealed the value of xi in the process of the proof.
Solution: You check xixj using Xi, Xj, but when checking xkxi, use Xk, RXi; in special case x2

i , use
Xi, RXi.

3. Check correctness of all relations (12.5) as in Aspect 2.

If the translation is false wrt addition, val(Xi) = val(RXi), or relations (12.3) or (12.4), then Pr(Ver
accepts)≤ 1/2. Also if the translation is false wrt Aspect 2 or Aspect 3, and Ver audits the same, then
Pr(accept)= 0.

25

12.5 Full verification

In Full Verification, EP has posted M (45 columns) and M+
e (K columns). EP ZKPs value consistency to Ver.

There will be K − 45L columns of Me left to use at the end, where L = 20. Ver is convinced that 9/10 of
these are pvc.

Ver randomly selects 105 of the untouched columns of M+
e . EP extends each column to full translation

of the SLC as in Section 12.4. Let the extended SLC (ESLC) denote the collection of all 105 translations. If the
output the EP gives is incorrect but Ver accepts the ZKP, that must mean that every translation in the ESLC
is incorrect. For a translation to be incorrect, either (a) commitment to input values x1, . . . , xn is incorrect or
(b) translation incorrect wrt Aspect 1, 2, or 3. Pr(a occurs)= 1/10. Out of all translations where (b) occurs,
by pigeonhole more than 1/3 of them are false wrt Aspect i for i ∈ {1, 2, 3}. Verifier chooses to audit Aspect
1 with Pr 1/2, Aspect 2 with Pr 1/4 and Aspect 3 with Pr 1/4.

Assume more than 1/3 false wrt Aspect 1. In this case, Pr(accepting)≤ 1/2 + 1/2 · 1/10 + 1/2 · 9/10 ·
2/3 + 1/2 · 9/10 · 1/3 · 1/2 = 0.925. Now (0.925)105 ≤ 2.8 · 10−4.

Assume more than 1/3 false wrt Aspect 2. Then Pr(accepting)≤ 3/4 + 1/4 · 1/10 + 1/4 · 9/10 · 2/3 =
0.925. Again, (0.925)105 ≤ 2.8 · 10−4. The result is the same if more than 1/3 are false wrt Aspect 3.

Thus we conclude that Pr(Ver accepts when output is wrong)≤ 2.8 · 10−4.

12.6 ZKP of inequalities

By Adrian Remark: this section does not require the machinery of SLCs with addition and multiplication developed
in previous sections.

Suppose x, y < p/2 and work in Fp such that p ∼ 232. We want a ZKP that x ≥ y. It is enough to prove
that x < p/2, y < p/2, and x− y < p/2 which implies that x ≥ y since we are working mod p (otherwise
the overflow will be greater than p/2). The EP generates random representations X = (u1, v1), Y = (u2, v2)
such that val(X) = x, val(Y) = y.

A test set TS = (Z1, ..., Z40) is a collection of random representations such that Zj ∈ Fp × Fp and

(val(Z1), ..., val(Z40)) is a permutation of (1, 2, 4, ..., 219, 0, ..., 0).
The EP/Auct wants to ZKP that x ≥ y. Creates pairs of test sets (TS1

1, TS1
2), (TS2

1, TS2
2), (TS3

1, TS3
2).

EP posts COM(X), COM(Y), COM(TSi
1), COM(TSi

2). Ver chooses c1 ∈ {1, 2} to send to EP. Suppose

c1 = 1. EP opens all envelopes of COM(TSi
1) for i = 1, 2, 3, and Ver checks that TSi

1 are actually test

sets. Then COM(X), COM(Y), COM(TSi
2) are untouched, and the verifier knows with probability 1/2 that

COM(TSi
2) are valid as described above.

EP posts for TSi
2 the 20 nonzero indices ji

1, ..., ji
20 and (ri,−ri) for each i such that

X = Zi
2,ji

1
+ · · ·+ Zi

2,ji
20

+ (ri,−ri).

If the EP proves that the previous equation is true, then he has shown that x < 220 while revealing nothing
about which bits are zero in the binary representation of x. Ver challenges c2 ∈ {1, 2}. If c2 = 1, then EP
opens all the first coordinates of the Zi

2,ji
k

.

In other words, EP chooses indices j such that

X =
20

∑
k=1

Z1
2,j1k

+ (r1,−r1)

Y =
20

∑
k=1

Z2
2,j2k

+ (r2,−r2)

X −Y =
20

∑
k=1

Z3
2,j3k

+ (r3,−r3)

26

This allows us to prove that x, y < 220 and x − y < 220. If one of these statements is false, then the
verifier can find out with probability 1/2 by opening half the envelopes in his challenge. If we repeat this
20 times, Pr(false but Ver accepts)≤ 1/220.

The End.

27

	Elementary Number Theory
	M2 -5mumod5mu-n encryption
	RSA encryption
	Euler's Theorem
	Encryption system
	Semantic security [Goldwasser-Micali (1982)]
	Malleability

	ElGamal Encryption
	Computation Diffie-Hellman
	Decision Diffie-Hellman
	Encryption system

	Digital Signatures
	RSA (pure) signatures
	ElGamal signatures

	Zero Knowledge Proofs
	Interactive ZKP of knowledge of y -5mumod5mu-n [Fiat-Shamir]
	Non-interactive ZKP of knowledge of y -5mumod5mu-n
	Digital signature using Fiat-Shamir
	ZKP of knowledge of y1,…,y10 -5mumod5mu-n
	A computationally efficient bijection Sk .5-.5.5-.5.5-.5.5-.5[0,k!-1]
	Non-interactive ZKP of knowledge of y1,…y10 -5mumod5mu-n

	Overview of Financial Cryptography
	Time Lapse Cryptography
	Vickery auctions
	Regulation/compliance
	Multi-party computations
	Homomorphic encryptions

	Secret Sharing
	Classical secret sharing [A. Shamir]
	Check vectors
	Verifiable secret sharing
	Sharing multiple secrets

	Time Lapse Cryptography using ElGamal
	Byzantine Agreement
	Byzantine agreement: applications to TLC

	Commitment Methods
	Straight Line Computations
	Introduction
	The model
	Translation of inputs
	Building a translation of SLC; ZKP of correctness
	Full verification
	ZKP of inequalities

