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MODULI STACKS OF VECTOR BUNDLES

JONATHAN WANG

This talk is based on my Harvard senior thesis: arXiv:1104.4828.

1. Introduction

Let X be a smooth projective curve over C (you can think of X as a Riemann
surface in the analytic setting if you wish) throughout. Then there exists a smooth
variety PicX over C whose C-points are the isomorphism classes of line bundles
on X. More generally, for any scheme (variety) S over C, the set HomC(S,PicX)
corresponds to a sheafification of the line bundles on the family of curves X ×S
(the Picard group). This is an example of a moduli problem: studying a class
of objects (line bundles) on families of schemes (curves). In this case, the Picard
scheme PicX is the fine moduli space of line bundles.

We will be considering the moduli problem of vector bundles of a fixed rank
r on X ×S as S varies. Pullback makes this a “presheaf” on the category of
Sch. But what category does this functor go to? Vector bundles have many non-
trivial automorphisms (Aut(Or) = GLr), so we shouldn’t just ignore these. To
account for this, we define a presheaf Bunr : Schop → Gpd to the 2-category of
groupoids. Since you can glue compatible vector bundles together, this presheaf is
a sheaf/stack. The goal of this talk will be to outline/convince you that this sheaf
has geometric properties which makes it behave almost like a scheme, i.e., Bunr is
an algebraic stack [Beh91, Bro10, Ols06, Sor00].

This result is important because once we know Bunr is algebraic, one can define
quasi-coherent sheaves and D-modules on it, just as with schemes. The geometric
Langlands program studies the correspondence between D-modules on Bunr (↔
automorphic forms) and local systems (rank r vector bundles with flat connections)
on X (↔ Galois representations), and this correspondence has deep connections to
both number theory (classical Langlands) and quantum physics (cf. [Fre10]).

2. Algebraic stacks

For S ∈ Sch, let Bunr(S) be the groupoid consisting of vector bundles E of rank
r on XS := X ×S, where morphisms are isomorphisms of vector bundles over XS .
Remark: vector bundles (as schemes over X) are equivalent to locally free sheaves
on X. If we have a map f : T → S, then the pullback f∗E is a vector bundle on
XT . This makes Bunr into a presheaf of groupoids: this means that pullbacks and
compositions of maps are compatible in some reasonable way.

Date: March 15, 2012.

1



2 JONATHAN WANG

2.1. Stacks. It is a classical result that if you have an étale covering {Ui → S}
(open covering in the analytic topology) and vector bundles Ei on XUi that “agree”
on overlaps, then there exists a vector bundle E on XS such that E|XUi

= Ei. We

say that {Ei} descends to E. In other words, vector bundles glue. So Bunr is a
“sheaf of groupoids”, or a stack [FGI+05], with respect to the étale topology.

2.2. Algebraic stacks. There are certain conditions that one wants a stack to
satisfy so that it is sufficiently geometric, i.e., behaves like a scheme. For stacks
whose associated groupoids have large automorphism groups, the notion is called
an algebraic, or Artin, stack [LMB00, Sta].

First, note that any sheaf of sets is a stack. So by the Yoneda embedding, any
scheme can be considered as stack. We will use S to denote both the scheme and the
corresponding sheaf. Let Y be a stack Schop

et → Gpd. By a 2-categorical version
of Yoneda, a map S → Y is equivalent to an object of Y(S). For Si ∈ Sch and
yi ∈ Y(Si) for i = 1, 2, we define the stack fibred product S1×Y S2 : Schop → Gpd
by

(S1×
Y
S2)(T ) = {fi : T → Si, α : f∗1 (y1) ' f∗2 (y2)}

We say that a stack is schematic if it is isomorphic to a scheme (via Yoneda). Now
Y is algebraic if:

(1) For any Si ∈ Sch, the fibred product S1×Y S2 is schematic1

(2) There exists a scheme U mapping to Y such that for any S ∈ Sch, the base
change U ×Y S → S is a smooth surjective map of schemes.

So now we can state the main result:

Theorem 1. The stack Bunr is algebraic.

3. BGLr

Before considering vector bundles on a family of curves, let’s consider a simpler
problem: We define presheaf Schop → Gpd by BGLr(S) to be the groupoid of
vector bundles of rank r on S (compare with Bunr: which is vector bundles over
XS).

Theorem 2. The presheaf BGLr is an algebraic stack. The map from a point
· → BGLr corresponding to Cr is smooth and surjective: in fact for E ∈ BGLr(S),
we have · ×BGLr

S ' IsomS(Or,E) over S.

As a toy example, let us compute · ×BGLr
·. This stack sends S to an automor-

phism of Or
T , i.e., an element of GLr(T ). Therefore the fibred product is just GLr

in this case. For general E ∈ BGLr(S), we trivialize E locally, and then we must
check that the GLr glue together properly to give IsomS(Or,E).

Since · → BGLr is surjective, we can think of it as a quotient [·/GLr] where ·
has trivial G-action. More generally, we can consider stacks [Z/G] where Z is a
scheme with some G-action and G is an algebraic group. One can then describe
relationships between these quotients when you change the space and/or the group.

1We actually only require the fibred product to be representable by an algebraic space, but
our fibred products will satisfy this nicer condition.
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4. Hom as a scheme

For a stack Y, we can define another stack Hom(X,Y) sending S to the groupoid
Y(XS). Notice that with this definition, we get Bunr = Hom(X,BGLr). So before
thinking about Hom(X,Y) in general, let’s consider the easier problem of when
Y = Y is a scheme: then Hom(X,Y ) = Hom(XS , Y ) = HomX(XS , X ×Y ). This
motivates the following definition: given a map of schemes Z → X, let Sect(X,Z)
be the sheaf of sets sending S 7→ HomX(XS , Z).

Theorem 3. If Z → X is quasi-projective, then Sect(X,Z) is representable by a
disjoint union of quasi-projective schemes over C.

This theorem is where much of the work goes into proving condition (1) of
algebraicity for Bunr. The proof involves using Grothendieck’s Hilbert schemes
[FGI+05]. When Z → X is projective, the idea is that a section XS ↪→ ZS cor-
responds uniquely to a closed subscheme, so Sect(X,Z) is some subscheme of the
Hilbert scheme.

5. Presentation of Bunr

Once we have condition (1) of algebraicity, all that is left is (2) to find a pre-
sentation of Bunr, i.e., some scheme U , which will actually be locally of finite type
over C, with a smooth surjective morphism to Bunr. This involves thinking about
trivializations of vector bundles and Hilbert polynomials. As with any kind of
representability result, this will again involve the Quot scheme.

Fix a very ample line bundle O(1) on X. We define the substack

Un ⊂ Bunr

with Un(S) consisting of the vector bundles E on XS such that H1(Xs,Es(n)) = 0
and Es(n) is generated by global sections, where Es = E⊗ k(s) is the pullback to
the fiber Xs := XSpec k(s). (These conditions are essentially to ensure base change
and cohomology are compatible.) By Serre’s theorem on quasi-coherent sheaves on
projective space, these Un form an open covering of Bunr, so it suffices to look at
each Un. To save notation, we’ll just consider U := U0. Note that H0(Xs,Es) is
a finite dimensional k(s)-vector space. By the upper semi-continuity theorem, the
dimension is locally constant in s. So U = tUd where d is this dimension of the
space of global sections. Fix d and consider the stack

Y→ Ud

where Y(S) has objects (E, x1, . . . , xd) consisting of a vector bundle E and sections
xi ∈ H0(XS ,E) such that the sections restrict to a basis on each fiber. Since Ud

essentially just forgets about the choice of a basis, the fibers of Y → Ud are just
GLd. (In fact, we have Ud = [Y/GLd].) Now Y has just enough structure on it
that it is representable by a quasi-projective C-scheme! So if we do this over all
n, d, we get a smooth surjection tYd

n � Bunr. This proves condition (2) and hence
Theorem 1.

Example 4. If r = 1, then Bun1 is the Picard stack. Since X always has a k-point,
we in fact have an isomorphism BGm×PicX ' Bun1. This case is special since
GL1 = Gm is abelian. So Bunr can be seen as a non-abelian generalization of the
Picard stack.
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